
Summary. 1. Fluctuations in the resting membrane
potential of frog nerve fibers were analyzed in the frequency
range from 1 to 10 000 radians per second. The power spectrum
follows a 1/f law.

2. Latency fluctuations have been measured for different
stimulus intensities. The relation between standard
deviation

* Presented at the June 1964 meeting of the "International
Organisation   for   pure  and  applied  Biophysics"   in  Paris.

and mean follows a quadratic law. It can be shown for a number
of different receptors that this relation is in part linear in part
quadratic.

Introduction

Fluctuations in excitability were first described
by  MONNIER and JASPER  and  by BLAIR and ERLANGER
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(1932). The phenomenon has been investigated further by
PE C HE R (1939). He already thought that these
fluctuations would be of importance in sensory nerve
endings and in synaptic activity. This has been
confirmed in the last decade (cf. HAGIWARA 1954, FATT
and KATZ 1952).

The expressions " coding " and " noise " have been
introduced into neurophysiology since the advent of
information theory. Refined techniques of intra- and
extracellular recording as well as statistical analysis of
action potential series by means of computers have
resulted in a mass of data on spontaneous and ex-
ternally induced neuronal activity. Models and hypo-
theses have been put forward in order to organize the
data. This report intends to describe one ing
future theories: neural noise.

The investigations on fluctuations in
excitability and latency pursued by one of
us (A.A.V.) since 1957, can be summarized as
follows (Fig. 1)

Repetitive application of a rectangular
electrical stimulus to an axon results in
an action potential in a fraction of all
trials, depending on stimulus intensity.
The repetition frequency must be low
enough to reduce the serial correlation
coefficient for successive trials to zero. For
frog axons this occurs to repetition
frequencies of 0.5 trials/sec or less.

The relation between probability of res
stimulus intensity follows a gaussian distributio
mean of this function – the stimulation thresho
standard deviation (SD) – the spread depen
stimulus duration. The coefficient of variati
distribution – the relative spread (RS) – is inde
the width of the rectangular stimulus1.)

Different axons in a nerve react to 
stimulus independently of each other (B
ERLANGER 1933, PECHER 1939).

When action potentials occur for a given st
latencies fluctuate. Here, the distribution in g
not follow a gaussian curve.

Another point of interest is the excitability 
during the recovery period following an action
For the supranormal period it was found th
remained the same, although the threshold ha
value. The RS, further, was not measurably influ
150 C change of temperature, by a change i
concentration of the atmosphere from 0 to 5%
urethane in the surrounding RINGER'S solution
strychnine in a 1:20,000 concentration (ERLAN
1941) produced an increase in the RS of about 
the pattern of the changes in threshold, spread
these experiments it was concluded that the RS 
the quotient of the SD σ of the membran
fluctuations and the threshold potential differenc

 
1 The moments of the excitability distributio

other names, to prevent confusion with the mom
latency distributions and with the terms used in t
analyses needed in the investigations. The name
threshold is used for the mean in accordance with 
threshold definitions by BLAIR and ERLANGER (1935
HODGKIN and RUSHTON (1946). Spread is a synonym f

Theoretical considerations led to the same conclusion.
For axons of the species Rana, Astacus and Sepia it was

found that

log RS  =  –1.50 – 0.80 log D,

where D is the axon or node diameter in microns.
To explain these findings, one might invoke as  a cause

the thermally generated voltage fluctuations across the
membrane resistance (FATT and KATZ 1952, FITZHUGH 1955).

However, the calculations by FATT and KATZ result in
the following relation between voltage fluctuations and fiber

                                VERVEEN and DERKSEN:  Fluctuations in membrane potential of axons and the problem of coding                         153Band 2, Heft 4
Februar 1965
redient for diameter

Fig. 1. The relation between response probability and stimulus intensity for
a frog nerve fiber. Stimulus intensity in percentage of threshold. Stimulus
presented every 2 seconds.
                                        (After VERVEEN 1959)
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log √ v-2     = –4.20 –0.75 log D.
Although the slopes of these two lines are nearly equal,
fluctuation intensities derived from the second expression
are much too small (about 10 times) to explain the
fluctuations found.

Another discrepancy has been found for the width of
the noise spectrum. Starting from the equivalent electrical
diagram for frog node one arrives at the conclusion that the
membrane time constant (60 µsec) is the limiting factor at
the upper end of the spectrum, which leads to a cut off at
2800 c/sec. This problem has been investigated by means
of neuron analogs and direct computation by TEN HOOPEN
and VERVEEN and by TEN HOOPEN et al. (1963). In these
studies the noise was assumed to be white. It was found
that the spectrum would fall off between 500 and 2000
c/sec.

The cause of these discrepancies can only be found by
means of a more direct approach. The following paragraph
describes the result of direct measurements of the
membrane potential fluctuations. In the last paragraph the
problem of neural noise and coding in receptors is
investigated, using knowledge gained from experiments on
Ranvier nodes.

Voltage fluctuations in an axon segment
The empirical equations describing ionic currents as

functions of membrane voltage and of time, as given by
HODGKIN and HUXLEY for squid giant axon and by
FRANKENHAEUSER (1957) and DODGE (1961) for frog node
do not take into account any fluctuation phenomena,
though these were present in the voltage clamp
measurements on which the equations are based. Another,
and as FITZHUGH pointed out in 1955, related aspect of the
equations is that they do not have, at threshold, a
discontinuity in the strict
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mathematical sense. There is a narrow zone of stimulus
intensities where the equations predict responses
intermediate in size between subliminal responses and
action potentials. However, as a consequence of
membrane voltage fluctuations it will be impossible for
these intermediates to occur : the noise will throw

For R the measured value of the membrane resistance was
used. Generally this leads to discrepancies with
experimental results. From a theoretical point of view
NYQUIST'S formula does not apply in this case, for in the
resting state already currents of several species of ions flow
through the membrane, which leads to shot noise. Adsorp-

tion on fixed anions will lead to generation-
recombination noise, moreover the total con-
ductance of the membrane might fluctuate.

For these reasons we have tried to measure
membrane voltage fluctuations directly. In our
first series of experiments we used the well-
known arrangement where the internodal
segment of a single frog sciatic nerve fiber
crosses the gap between two pools of RINGER’ S
solution (Fig. 2). Internodal isolation was
realized either by desiccation or by a small
flow of ion free sucrose solution.

The voltage between pools was amplified
one hundred times by a specially designed
preamplifier, which had to meet the conflicting
requirements of very low grid current and high
input impedance on the one hand, and low
noise and microphonics on the other. After
further amplification (1000 times) the signal
was fed into a set of five bandpass filters, pro-
grammed on a general-purpose analog com-
puter. The resonant frequencies were 1, 10,
100, 1000 and 10,000 radians per second and
the bandwidth corresponded to a Q of 10. The
Fig. 2. a Arrangement of the nerve fiber in pools of RINGER'S solution. b Electrical
equivalent of the nerve fiber in the resting state. Voltage sources are not drawn
Fig. 3. Noise spectrum of a nerve fiber showing deviation from 1/f
aw at the lowest frequency

the response of the system into one of the two classes, all
or none, with a probability distribution depending on
stimulus intensity. This phenomenon has been
investigated by P EC HE R and recently by VERVEEN.

To estimate the magnitude of membrane voltage
fluctuations, FITZHUGH (1955), FATT and KATZ (1952),
BULLER et al. (1953), HAGIWARA (1954) and several
other authors used NYQUIST'S formula for the rms voltage
fluctuations across the terminals of a metallic electron
conductor: e2 = 4 kT BR. 

narrow band noise voltages at the filter output
terminals were squared and than integrated over a period of
5 to 15 minutes.

The noise spectra of the sixteen fibers measured in
this way all show over most of the range covered an intensity
inversely proportional to the frequency. Our most
recent determinations which we believe are the most
accurate, all show a deviation from this 1/f rule at the
lowest frequency of one radian per second (Fig. 3). 

At the high end of our spectral range, we sometimes
found a  transition to a  flat power spectrum  (Fig. 4).

Fig.
 4. Noise spectrum of a nerve fiber with low noise intensity,
showing deviation from 1/f law at high frequencies
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Unfortunately the range could not be extended so as to find
the two transitions always and on the same preparation. At
a given frequency in the 1/f-range, the noise intensities vary
from fiber to fiber but do not differ more than one order of
magnitude, that is somewhat more than a factor three in
rms noise voltage.

The results so far obtained suggest that the power
spectrum of nerve membrane voltage fluctuation runs flat
from zero frequency to about one rad/sec, then follows the
1/f relation to a frequency somewhere between 103 or 104

rad/sec and then remains frequency independent again. At
very high frequency it will fall off due to membrane
capacitance. This spectrum is shown in Fig. 5 together with
the autocorrelation function calculated from it. The shape
of the autocorrelation function confirms PECHER'S
conclusion that determinations of threshold fluctuations had
to be done at stimulus intervals not less than two seconds or
so to get independent trials.

The 1/f type of power spectrum is well known in
physics and technology. It is called by different names such
as current noise, flicker noise or excess noise. It is found in
carbon resistors, carbon microphones and in some metal
films where it originates in the granular structure of the
conducting material. It is present in the electron emission of
oxide coated cathodes of vacuum tubes, where the most
probable cause is the presence of foreign atoms diffusing
through the oxide layer and locally modulating the work
function of the cathode material. As a final example we
may mention the excess noise in semiconductors either in
the bulk material or in junctions. It is believed that surface
contaminations which trap free carriers cause conductivity
fluctuations in this case.

Theoretical analyses for these cases are far from
satisfactory. When we try to apply the mechanisms
proposed so far to cell membrane physiology only a few
approaches remain. The first is derived from MCFARLANE'S
theory of 1/f noise (1950). Atoms or ions diffusing over the
surface of a metal show density fluctuations. For a circular
area of the surface the power spectrum of the density
fluctuations is roughly proportional to 1/f over three
decades. We could apply this to a circular cross section of
nerve. Here however the area is not bounded by a
hypothetical circle but by a circular barrier.

Another possibility would be that ion conduction takes
place through channels in the membrane and that a channel
could be blocked by adsorption of an ion. It has been
argued by BELL (1958) that for an exponential distribution
of adsorption times the number of ions waiting for passage
would fluctuate and that the spectrum might follow the 1/f
rule.

The numerical evaluation of these two mechanisms is
rather difficult. We are working on it now. What kind, of
mechanism will finally be the most plausible we do not
know. The main point is that the study of fluctuation
processes in nerve can show us something about the ion
conduction on a molecular scale. On the experimental side
several improvements are now being introduced. We have
to expand the frequency range to get the full power
spectrum. Further the method just described does not allow
of a separation between the contributions of node
membrane and internodal segment. The nodes adjacent to
the gap are moreover shunted by neighboring fiber
sections.

Fig. 6 shows how this has been circumvented. Isolation
between nodes is now established by means of electronic
feedback, a method introduced by FRANKENHAEUSER. The
isolation amplifiers are stabilized, have

Fig. 5a. Hypothetical noise spectrum of a nerve fiber with a
1/f range terminated by flat power spectra at both low and high
frequencies. At still higher frequencies the spectrum is
supposed to be limited by membrane capacitance. Vertical
scale in arbitrary units

Fig. 5b. Autocorrelation function of the power spectrum of Fig. 5
a. Vertical scale in arbitrary units

Fig. 6. Experimental arrangement for measuring noise of only one
node of RANVIER. The nerve fiber is represented by its electrical
equivalent

a grid current below 10-12 A, input impedance is 1010 Ω, the
frequency response is flat from zero to 10 kc/s. The output
voltages of the isolation amplifiers are (e–1– e0) and (e0–e1),
respectively, where e0 is the fluctuating voltage of the
middle node membrane and
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e–1 and e+1 are the noise sources to the left and right side of
that node.

After further amplification the output voltages are
supplied to bandpass filters having identical tuning
frequencies and bandwidths. The two narrow band noise
voltages are multiplied with each other and so we obtain

e–1e0 – e–1e1 – e0
2+eoe1.

Fig. 7. Latency distributions of a frog node of RANVIER upon
stimulation with long duration rectangular currents. Abscissae:
time in msec. Ordinates: percentage of total number of latencies
recorded. Stimulus intensity in percentage of absolute threshold.
Latency distributions at stimulus intensities of 105, 138 and 156 %
are also plotted on expanded abscissae to show shape of the
distribution

Fig. 8 a. Log-log representation of the relation between the mean
M and the standard deviation D of the latency distributions of a
frog node of RANVIER. Time is measured in microseconds. Each
point is calculated from 25 meas-urements. The best fitting line
with a slope of 2 is drawn
Fig. 8b. Log-log representation of the relation between the mean M
and the percentage intensity of the stimulus

After integration the only term remaining is e0
2, the mean

square of the fluctuating voltage across the middle node.
This we can relate to the nodal membrane impedance and
to fluctuations in excitability and latency.

Membrane noise and coding
Upon stimulation of an excitable membrane the existence
of membrane noise becomes manifest by a fluctuation in
its excitability, and, if an action potential is
generated, by a fluctuation in its latency:

the interval of time between the onset of the stimulus and
the beginning of the action potential.

The threshold range is rather narrow in thick axons (the
RS is small) and the safety factor is large, so one might ask
whether the experiments mentioned in the introduction do
give much information relevant to the problem of "coding
and neural noise". However, thin elements may exhibit an
impressive degree of neural noise (FATT and KATZ 1952,
VERVEEN 1962). And, even for elements with not much
noise (with a small RS), the fluctuations will always
become manifest as fluctuations in latency, also for high
intensity stimulation.

In this paper the preliminary result of experiments on
latency fluctuations of isolated nodes of RANVIER will be
communicated.

Fig. 7 gives an impression of the different latency
distributions obtained for different stimulus intensities

At stimulus intensities about the threshold range, the
distributions are broad and skewed to the right. With
increased intensity of stimulation the distributions shift to
the left – their mean value decreases –, they become much
narrower and they also lose their asymmetrical appearance.
The upper distributions shown, except the one at the far
right, can be regarded as symmetrical, as has already been
pointed out by HORVATH et al. (1961). In Fig. 8a a log-log
plot is shown of the SD S versus the mean M of the latency
distributions. The points characterizing these distributions
move down with increase of the intensity of stimulation.
The slope of the regression line is about 2. This is a striking
phenomenon: when the mean decreases the SD decreases
quadratically. This is a consistent property of the latency
distributions. In Fig. 8b a log-log plot of the mean M of
these distributions versus relative stimulus intensity is
given. The impression is that the slope of this relation is
about minus 1. If we take the reciprocal of the mean
interval and express this as a "rate" of firing in impulses per
second, this result indicates that the "firing rate" is linearly
related to the intensity of the stimulus. A phenomenon that
has been described for many receptors, for non-
accommodating axons (cf. BULLOCK 1953) and, recently,
for motoneurons (GRANIT et al. 1963).

One might perhaps ask at this point, what information
with regard to our topic is given by these experiments. To
this end both the latency fluctuations of the Ranvier node to
external stimulation and the interval fluctuations of the
sequence of action potentials generated by receptors are
considered from the same point of view (BULLOCK 1953).

The properties involved are listed in the set, visualized
by Fig. 9 (Related models were suggested or used by BLAIR
and ERLANGER 1935/36, LANDAHL 1941, RASHEVSKY 1948,
VERVEEN 1961, VIERNSTEIN and GROSSMAN 1961, TEN
HOOPEN et al. 1963 a and b, and WEISS 1964).

1. Due to some mechanism or influence the membrane
depolarizes. By first approximation the depolarization is
exponential, asymptotically tending to some ultimate
depolarization level U, with a time constant τ.

2. The starting level of this "activation depolarization"
is at the resting potential in silent elements. In
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active elements the process is supposed to start at the end
of the refractory period.

3. When the depolarization crosses a critical level, an
impulse will be produced. The difference between the
starting level and the critical level is the threshold potential
difference d.

4. The noise in the system is gaussian, with a SD σ. For
ease of calculations its mean is set at the critical level d,
which is, therefore, fluctuating.

5. It is assumed that no correlation exists between the
respective noise amplitudes at successive crossings of the
critical potential (HAGIWARA 1954, BISCOE and TAYLOR
1963, HORVATH et al. 1961).

For ease of presentation the effects of adaptation,
accommodation and the refractory period are not taken into
consideration in this paper.

The type of the interval distributions generated in this
system (Fig. 9) is related to the size of the ultimate
depolarization level U considered with regard to the
threshold potential difference d:

1. For U smaller than d the distribution of intervals is
exponential. We may visualize the process as the
negatively sloped intersections of the fluctuating critical
level with a horizontal line, indicating U, below d. At each
intersection an action potential will be generated.

2. When U is about equal to d the distribution shows a
substantial gap at its beginning, due to the fact that we must
take account of the change in time of the activation process.

3. With U larger than d the locus of the points of
intersections of the activation process with the critical
range is curved. The distributions are about symmetrical,
because of the fact that a crossing later in time can occur
only if no earlier crossing has occurred.

4. When U is much larger than d the locus is linear and
very steep. In this case the resulting distributions are
Gaussian.

For this family of distributions the relations between the SD
S and the mean M are

                log M, for U < d    exponential distribution.

                2 log M + log k, for U> d    symmetrical          (1)
                                             distribution.

                log M + log σ/d , for U> d  Gaussian distribution.

The second part of this relation could be derived only by
histogram evaluation (cf. the histograms published by TEN
HOOPEN et al. 1963). Some uncertainty exists, therefore,
about the exact value of the coefficient 2. On the basis of
this result, however, an expression for the constant k could
be derived

                  k= c/τ • σ/d , with 2.08 < c< 4.             (2)

It will be noted that the RS (= σ/d) plays an important role
in these equations.

Because of the same reasons no equations were found for
the relation between the mean M and the ultimate
depolarization level U. The mean M decreases with the
increase of  U. The authors have the impression that, for
U> d, the mean M is hyperbolically related to U, while for
U< d the error function comes into the equation.

In Fig. 10 the behavior of the SD S versus the mean M is
pictured in a log-log plot. For increasing values of U the
point characterizing the distribution moves from a position
at the far right, on the " exponential" segment (with slope
1), via the segment with slope 2 onto the lower " Gaussian "
segment with again a slope

Fig. 9. a: representation of the model; b: schematic drawing of the
resulting interval distributions. For explanation of symbols see text

Fig. 10. Theoretical relations between mean M and standard
deviation S. Both are expressed in log (microseconds). The values
of the RS and of τ (msec) are for A : 0.1 and 1, for B : 0.01 and 1
and for C : 0.01 and 10

of 1. The middle segment of the relation will be called the
"quadratic " segment, for obvious reasons. The influence of
the amount of noise in the system is pictured by the
relations A and B. For the first one the RS is 0.1, the second
(B) has a RS of 0.01. The other properties of the element
are equal. It is clear that an increase of the noise shifts the
quadratic segment to the left and the lower segment
upwards. The "exponential" segment remains in its place,
but  it  becomes  longer  to the left.  The upper part  of  this

log S =
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segment is common to all different kinds of elements of the

Fig. 11. The moments of the interval distributions of frog muscle spindle and of cat chemoreceptor, redrawn respectively
after BULLER et al. (1953) and BISCOE and TAYLOR (1963). M and S are expressed in milliseconds. The quadratic
line at the right side is drawn by the authors

                                                       Fig. 12                                                                            Fig. 13
Fig. 12. Interval distributions of frog muscle spindle (left) and of cat chemoreceptor (right), redrawn respectively after
BULLER et al. (1953) and BISCOE and TAYLOR (1963). - Fig. 13. Coding ranges found for (from left to right) : a model
(random step function TEN HOOPEN et al. 1963), an isolated node of RANVIER (only the upper part is shown), the cat
chemoreceptor (BISCOE and TAYLOR 1963), the infrared receptor (calculated from BULLOCK and DIECKE 1956) and the
frog muscle spindle (BULLER et al. 1953). M and S are expressed in milliseconds
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type considered. If only the time constant is changed,
increased in this case (Relations C and B), than the position
of the "quadratic" segment is changed, it is shifted to the
right. When we look at the upper two segments of relations
B and C only, it is clear that the effect of an increase of the
time constant is comparable with a decrease of the noise.

The relationships between the SD S, the mean M and
the shape of the distributions (their third moment) specify
the pattern of impulses for any ultimate depolarization level
U. In other words : they specify the code. Because of their
particular properties these distributions will be called
"coding distributions of the one-two-one type ". They are
first order coding distributions, because, due to the primary
influence of membrane noise, one has to look for these
distributions at the primary fibers, in receptors. Of course,
membrane noise is only one kind, although important, of
the different kinds of noise (fluctuations) one may
distinguish in the nervous system.

Receptor patterns have been analyzed for the properties
of their interval distributions by BULLER et al. 1953,
HAGIWARA 1954 and BISCOE and TAYLOR 1963. Fig. 11
gives the relations between SD S and mean M for carotid
body chemoreceptors in the cat, as determined by BISCOE
and TAYLOR. Most points are located on the "exponential"
segment. With more activity a downward shift is seen,
indicating the approach of the "quadratic" relation. The
figure also shows the relation, as found by BULLER and co-
workers, for the frog muscle spindle. Here most points are
located on the "quadratic" segment (its slope is 2,03), while
for higher values of the mean a tendency to approach the
"exponential" segment is visible. The shape of these
distributions is as expected from their positions on the S–M
graph : At the right side of Fig. 12 the interval distributions
of the cat chemoreceptors (BISCOE and TAYLOR 1963) are
shown. For high values of the mean the distribution is
exponential. For smaller means the tendency to become
less asymmetrical is apparent. Histograms published by
BULLER et al. (1953), also shown on Fig. 12, and by
HAGIWARA (1954), continue the trend: asymmetrical for
larger means, symmetrical for smaller means.

In the last graph (Fig. 13) a summary of the findings is
given. From left to right the coding ranges are shown in the
S–M representation for: a model; the frog node of RANVIER;
the cat chemoreceptor; the infra-red receptor of the rattle
snake (these points are calculated from interval
distributions published by BULLOCK and DIECKE 1956) and
the frog muscle spindle. The discharge patterns of all these
elements follow the one-two-one type coding distribution.

At the first center of integration, which may be located
peripherally, the situation may change. If only coincidence
is required and no inhibition is present, the coding range
may show a related shape. General equations for these
distributions have been developed by TEN HOOPEN and
REUVER (1964). If complications occur, and also after the
second integration things will probably become more
complex. Work on the pattern of higher order distributions
has been done by KUFFLER, FITZHUGH and BARLOW (1957),
VIERNSTEIN and GROSSMAN (1961), AMASSIAN et al. (1961,

1962), MOUNTCASTLE et al. (1962, 1963), BISHOP et al.
(1964) and by GERSTEIN, KIANG and coworkers (1960,
1961, 1962, 1964).
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